Zero-Shot Rumor Detection with Propagation Structure via Prompt Learning

Hongzhan Lin[♠]*, Pengyao Yi[♠]*, Jing Ma^{♠†}, Haiyun Jiang[†], Ziyang Luo[♠], Shuming Shi, Ruifang Liu[♠]

*Hong Kong Baptist University

*Beijing University of Posts and Telecommunications

{cshzlin, majing, cszyluo}@comp.hkbu.edu.hk, jianglu@fudan.edu.cn, {yi.py, lrf}@bupt.edu.cn

AAAI2023

code: https://github.com/PengyaoYi/zeroRumor AAAI

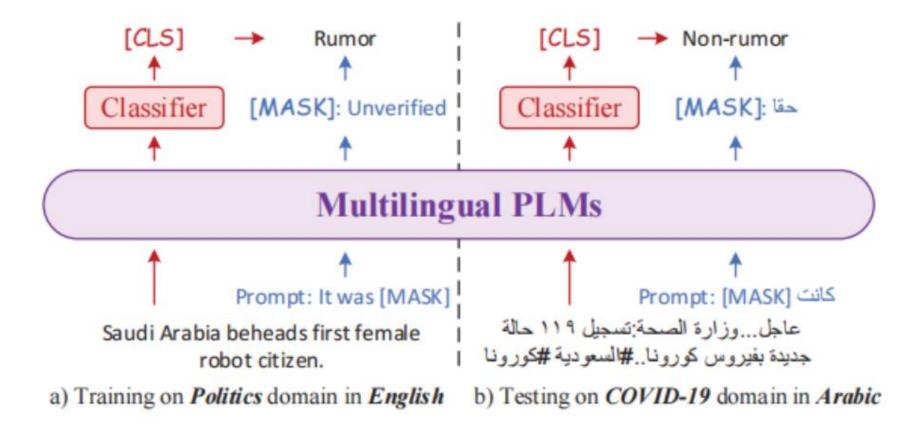
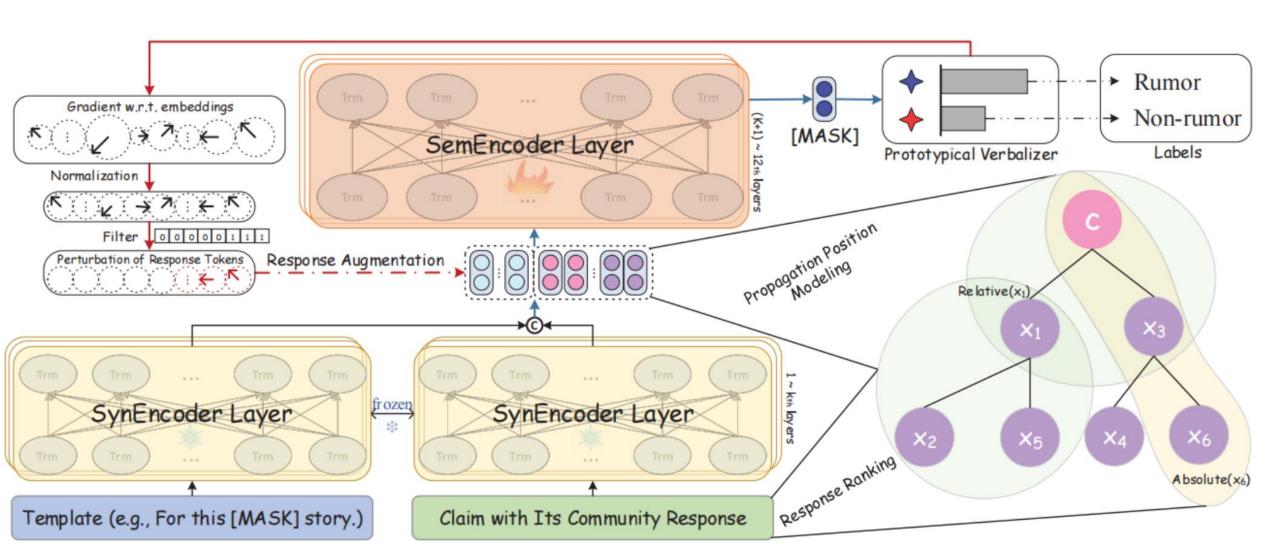
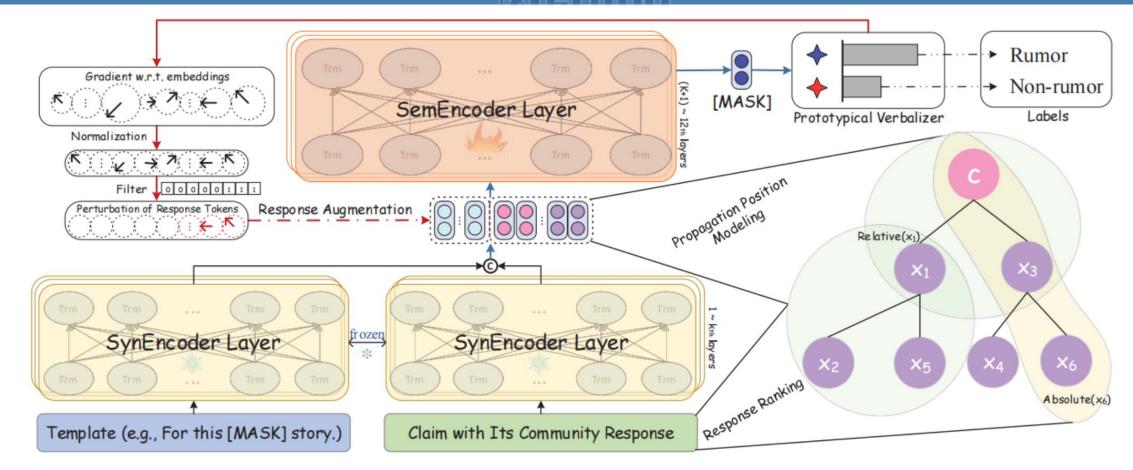
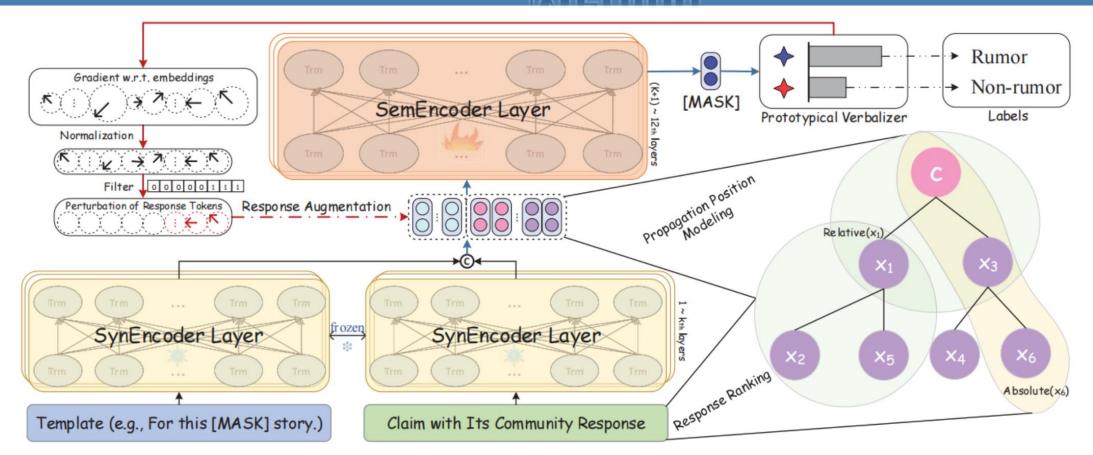




Figure 1: Illustration between the task-specific fine-tuning and the prompt learning paradigms for solving ZRD task.



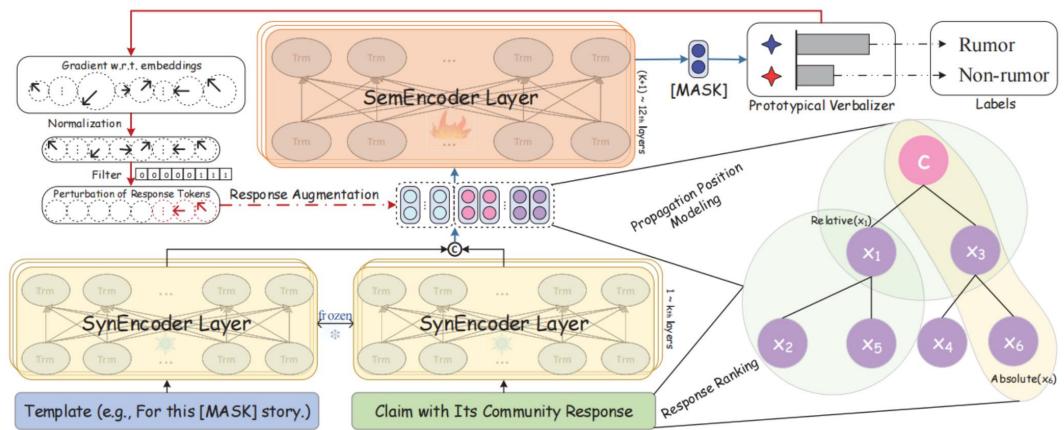
$$\mathcal{D}_{s} = \{C_{1}^{s}, C_{2}^{s}, \dots, C_{M}^{s}\} \qquad \mathcal{D}_{t} = \{C_{1}^{t}, C_{2}^{t}, \dots, C_{N}^{t}\}$$

$$C^{s} = (y, c, \mathcal{T}(c)) \qquad C^{t} = (c', \mathcal{T}(c'))$$

$$\mathcal{T}(c) = [x_1^s, x_2^s, \dots, x_m^s]$$

$$\mathcal{P}(y|\hat{c}) = g(\mathcal{P}([MASK] = v|\hat{c})|v \in \mathcal{V}_y) \tag{1}$$

$$X_p = \operatorname{SynEncoder}(p)$$
 (2)

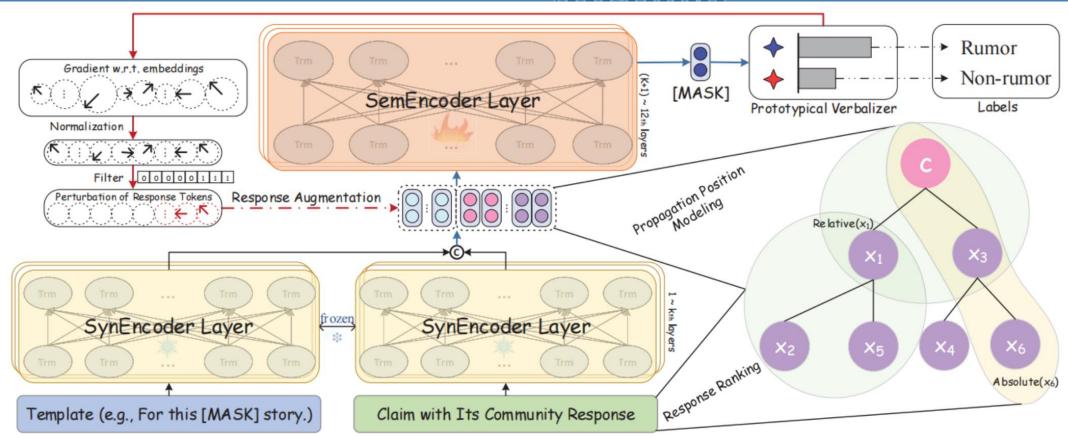

where $X_p \in \mathbb{R}^{|p| \times d}$ is the template embeddings and d is the dimension of the output state of SynEncoder.

$$X_{cr} = \text{SynEncoder}([c, \mathcal{T}(c)])$$
 (3)

$$H = \operatorname{SemEncoder}([X_p, X_{cr}]) \tag{4}$$

$$abs_{pro}(q) = distance_{tree}(x_i, c)$$
 (5)

Method



Given the [MASK] token representation H_i^m of a train- $\mathcal{L}_{con} = -\frac{1}{B_{y_i} - 1} \sum_j \mathbb{1}_{[i \neq j]} \mathbb{1}_{[y_i = y_j]}$ ing example C_i , we minimize a prototypical loss that is the negative log-likelihood:

$$\mathcal{L}_{proto} = -log \frac{e^{\mathcal{S}(H_i^m, l_y)}}{\sum_{y'} e^{\mathcal{S}(H_i^m, l_{y'})}}$$
(6)

$$\mathcal{L}_{con} = -\frac{1}{B_{y_i} - 1} \sum_{j} \mathbb{1}_{[i \neq j]} \mathbb{1}_{[y_i = y_j]}$$

$$\log \frac{e^{\mathcal{S}(H_i^m, H_j^m)}}{\sum_{j'} \mathbb{1}_{[i \neq j']} e^{\mathcal{S}(H_i^m, H_{j'}^m)}}$$

$$\mathcal{L} = \alpha \mathcal{L}_{proto} + (1 - \alpha) \mathcal{L}_{con}$$
 (8)

Dataset	So	urce	Target					
	TWITTER	WEIBO	Twitter-COVID19	Weibo-COVID19	CatAr-COVID19			
# of events	1154	4649	400	399	1699			
# of tree nodes	60409	1956449	406185	26687	168276			
# of non-rumors	579	2336	148	146	976			
# of rumors	575	2313	252	253	723			
Avg. time/tree	389 Hours	1007 Hours	2497 Hours	248 Hours	858 Hours			
Avg. depth/tree	11.67	49.85	143.03	4.31	13.26			
Language	English	Chinese	English	Chinese	Cantonese&Arabic			
Domain	Open	Open	COVID-19	COVID-19	COVID-19			

Table 1: Statistics of Datasets.

Source	TWITTER						WEIBO									
Target		Weibo	-COVID1	9	CatAr-COVID19			9	Twitter-COVID19				CatAr-COVID19			
Model Acc	Acc N	Acc. Mac- F_1	Rumor	Non-rumor	Acc.	Mac-F ₁	Rumor	Non-rumor	Acc.	Mac-F ₁	Rumor	Non-rumor	Acc.	Mac-F ₁	Rumor	Non-rumor
	Acc.		F_1	F_1			F_1	F_1			F_1	F_1			F_1	F_1
Vanilla-Finetune	0.623	0.585	0.711	0.459	0.518	0.402	0.583	0.220	0.603	0.602	0.619	0.585	0.481	0.481	0.479	0.474
Translate-Finetune	0.639	0.567	0.745	0.388	0.523	0.457	0.637	0.277	0.634	0.574	0.653	0.495	0.505	0.512	0.528	0.496
Contrast-Finetune	0.656	0.582	0.759	0.405	0.584	0.458	0.720	0.196	0.653	0.644	0.699	0.590	0.562	0.561	0.571	0.551
Adapter	0.644	0.600	0.737	0.463	0.558	0.438	0.665	0.211	0.652	0.612	0.736	0.487	0.548	0.556	0.605	0.508
Parallel-Adapter	0.651	0.598	0.730	0.467	0.567	0.450	0.701	0.198	0.667	0.653	0.731	0.574	0.579	0.585	0.636	0.534
Source-Prompt	0.664	0.648	0.722	0.574	0.589	0.564	0.460	0.669	0.670	0.616	0.760	0.472	0.599	0.565	0.688	0.441
Translate-Prompt	0.650	0.489	0.776	0.201	0.573	0.568	0.519	0.617	0.674	0.651	0.740	0.562	0.604	0.542	0.374	0.711
Soft-Prompt	0.652	0.574	0.756	0.392	0.590	0.565	0.446	0.683	0.685	0.652	0.758	0.546	0.609	0.575	0.518	0.633
RPL-Cho	0.713	0.675	0.786	0.563	0.613	0.581	0.455	0.707	0.715	0.689	0.778	0.601	0.634	0.633	0.616	0.650
RPL-Inv	0.728	0.666	0.810	0.521	0.601	0.592	0.473	0.711	0.733	0.710	0.788	0.632	0.647	0.640	0.586	0.693
RPL-Dep	0.732	0.689	0.805	0.574	0.640	0.619	0.530	0.708	0.723	0.711	0.771	0.650	0.657	0.636	0.547	0.724
RPL-Bre	0.745	0.719	0.804	0.634	0.631	0.617	0.544	0.689	0.727	0.697	0.793	0.601	0.672	0.664	0.614	0.714

Table 2: Rumor detection results on the target test datasets.

Source	TW	ITTER	WEIBO		
Model	Acc.	$\operatorname{Mac-}F_1$	Acc.	$\operatorname{Mac-}F_1$	
RPL-Bre	0.631	0.617	0.672	0.664	
RPL-Bre w/o RR	0.605	0.598	0.613	0.611	
RPL-Bre w/o APP	0.622	0.607	0.626	0.624	
RPL-Bre w/o RPP	0.610	0.601	0.633	0.632	
RPL-Bre w/o ViRA	0.626	0.612	0.644	0.634	
RPL-Bre w/o HPE	0.571	0.451	0.581	0.433	
RPL-Bre w/o PV	0.592	0.589	0.621	0.617	

Table 3: Ablation studies on our proposed model.

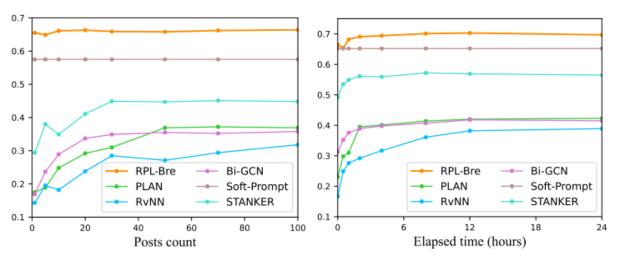


Figure 3: Early detection performance at different check-points of posts count (or elapsed time) on CatAr-COVID19 (left) and Twitter-COVID19 (right) datasets.

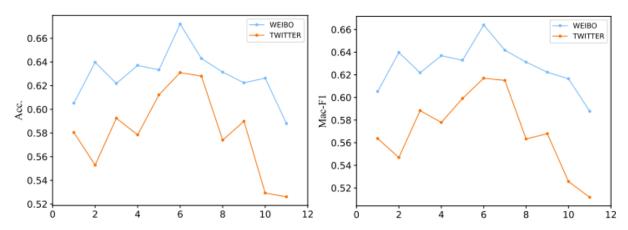


Figure 4: Effect of the layer number k of SynEncoder with Accuracy (left) and Macro F1 (right).

Thanks